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Abstract—For the first time, we propose a robust algorithm
for automating the neural-network-based RF/microwave model
development process. Starting with zero amount of training data
and then proceeding with neural-network training in a stage-wise
manner, the algorithm can automatically produce a neural model
that meets the user-desired accuracy. In each stage, the algorithm
utilizes neural-network error criteria to determine additional
training/validation samples required and their location in model
input space. The algorithm dynamically generates these new data
samples during training, by automatic driving of simulation tools
(e.g., OSA90, Ansoft-HFSS, Agilent-ADS). Initially, fewer hidden
neurons are used, and the algorithm adjusts the neural-network
size whenever it detects under-learning. Our technique integrates
all the subtasks involved in neural modeling, thereby facilitating
a more efficient and automated model development framework.
It significantly reduces the intensive human effort demanded by
the conventional step-by-step neural modeling approach. The
algorithm inherently distinguishes nonlinear and smooth regions
of model behavior and uses relatively fewer samples in smooth
subregions. It automatically deals with large data errors that can
occur during dynamic sampling by using Huber quasi-Newton
technique. The algorithm is demonstrated through practical
microwave device and circuit examples.

Index Terms—Design automation, modeling, neural-network
applications, optimization.

I. INTRODUCTION

RECENTLY, a computer-aided-design (CAD) approach
based on neural networks has been introduced for mi-

crowave modeling and design [1]–[3]. Neural networks are
trained from measured/simulated microwave data and the
resulting neural models are used during microwave design
[2]–[4]. Neural modeling techniques have been applied to a
wide variety of microwave problems, e.g., coplanar waveguide
(CPW) components [4], transistors [5], transmission lines [6],
bends [7], filters [8], and amplifiers [9]. Significant speed-up
of CAD by using neural models in place of CPU-intensive
electromagnetic (EM)/physics models resulted in a drive to
develop advanced neural modeling techniques [10]–[12].
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Neural model development involves several subtasks like data
generation, neural-network selection, training, and validation
[13]. Conventionally, these subtasks are manually carried out
in a sequential manner independent of one another. Such an
approach referred to as the step-by-step neural modeling ap-
proach requires intensive human effort. Modeling is just one
aspect of microwave CAD and the designers wish to develop
neural models even though they do not have enough exposure
to neural-network issues. There is a definite need for automation
of neural model development process. However, a successful au-
tomation technique needs to address multiple complicated and
interdependent challenges.

Microwave modeling problems are often highly nonlinear
and multidimensional. The number of samples needed for
developing a neural model with desired accuracy and their
distribution in the input space are not obvious. While too
many samples are expensive (e.g., three-dimensional (3-D)
EM simulations), too few samples lead to over-learning of the
neural network. The neural-network size required to develop an
accurate model is not knowna priori. Too many hidden neurons
need more CPU and too few neurons result in under-learning
of the neural network. Microwave data obtained from mea-
surement/simulation could have a few accidental large errors
that can result in nonreliable neural models. In an automated
procedure, there is no place for human intervention based on
problem-specific knowledge. It is, therefore, mandatory for
the automation technique to take an algorithmic approach to
simultaneously handle the above-mentioned issues.

Several notable techniques were proposed in the microwave
area. Knowledge-based neural networks (KBNNs) [5], hierar-
chical neural networks [6], difference method [14], and the prior
knowledge input method [15] utilize existing microwave knowl-
edge to improve neural model accuracy with fewer data. A va-
riety of sample distributions, e.g., star distribution [8] and cen-
tral-composite distribution [14], were used. The mulilayer per-
ceptrons neural network (MLPNN) process [13] discussed the
possibility of neural-network size adjustment. Research in the
neural-network area also led to several techniques, e.g., CasCor
[16] and CasPer [17] begin with a minimal neural network and
add neurons during training, and techniques based on robust sta-
tistical method [18] and higher order cumulants [19] deal with
large errors in training data. While some of these techniques
are derived for signal processing applications (not microwave),
others address specific challenges or subtasks of neural model
development.

In this paper, we propose a novel automatic neural model de-
velopment algorithm that integrates all subtasks in neural mod-
eling into one unified task. Starting with minimal amounts of
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training data and a small network, neural model development
proceeds in a stage-wise manner. In subsequent stages, the algo-
rithm can perform dynamic sampling and neural-network struc-
ture adaptation. Accidental large errors in training data that occur
during dynamic sampling would be successfully dealt with.

II. NEURAL MODELING PROBLEM AND AUTOMATION ISSUES

Let represent an vector containing physical parameters
of a microwave device/circuit, e.g., gate length of an FET. Let
representan vector containing the responsesof thedevice/cir-
cuit under consideration, e.g., drain current of an FET. The
EM/physics relationship betweenand can be represented as

(1)

This relation can be highly nonlinear and multidimensional.
The theoretical model for may be computationally too in-
tensive for online microwave design. A fast neural model is de-
veloped by training a neural network with a set of measured/sim-
ulated samples , where represents mea-
sured/simulated output for sample input, and represents
the set of training (learning) data. Let the input–output mapping
by the neural network be defined as

(2)

where is an vector of neural model outputs and
represents trainable parameters (weights) of the neural-network
structure . The objective of training is to find that minimizes
the error between neural model outputsand training data.

In order to highlight the critical issues that need to be
addressed by an automation technique, we briefly compare
and contrast step-by-step manual approach versus automation.
In the step-by-step approach, there is a scope for applying
problem-specific human experience in sampling the input space
for training data generation, and in testing the quality of the
trained neural model. Conversely, an automated approach must
have a built-in mechanism for sampling issues such as number
of samples and their distribution. The technique must incor-
porate a systematic neural-network training and simultaneous
model testing, by growing training and validation data sets in an
intertwined fashion. It must be able to distinguish nonlinear and
smooth regions of the model and generate samples accordingly.

The next issue is neural-network size, i.e., number of hidden
layer neurons. In the manual approach, network size determina-
tion is carried out using a tedious trial-and-error process. On the
other hand, an automation technique needs a systematic method-
ology for adapting neural-network size, e.g., adding neurons
based on neural-network errors. Another key issue is the pres-
ence of accidental large errors in training data caused by equip-
ment limitations (e.g., measurements at extreme frequencies)
and nonconvergence of simulators (e.g., simulations with in-
puts in extreme locations). In the step-by-step approach, it may
be possible (with great difficulty) to manually check and re-
move erroneous data samples from training set. A successful
automated approach, therefore, needs to implement a periodic
check for large errors and requires a training technique that can
yield reliable neural models even in the presence of such errors.
In summary, a lot of manual effort and periodic human deci-
sions are involved in the step-by-step approach that needs to be

avoided in an automated approach. These challenges are the mo-
tivation for our research toward automation.

III. A UTOMATIC NEURAL MODEL DEVELOPMENTALGORITHM

A. Introduction

Contrary to the step-by-step approach, the proposed auto-
matic neural model development algorithm focuses on the mu-
tual dependence of various subtasks like data generation, neural-
network size, neural-network training, and validation. Our al-
gorithm links these subtasks through neural-network learning
phenomena (e.g., over-learning, under-learning) and integrates
them into one unified process. The integrated process is comput-
erized and is carried out automatically in a stage-wise fashion.
Within a stage, the algorithm facilitates periodic communication
between various subtasks, thus enabling adjustment or enhance-
ment in the execution of a subtask based on the feedback from
other subtasks. As a result, each stage could involve dynamic
incremental data generation, neural-network size adjustment,
neural-network training with training data, and neural model
testing with validation data. The algorithm has built-in simu-
lation drivers (e.g., OSA90 driver, HFSS driver, ADS driver)
for facilitating automatic data generation during neural-network
training. Accidental large errors that could occur in training data
during dynamic data generation are detected and the effect of
these errors is neglected by automatic switching to Huber quasi-
Newton (HQN) training algorithm. The technique establishes
a quantitative link between neural model accuracy, the number
and distribution of training/validation data, and the neural-net-
work size. Automation of the model development process shifts
the workload from human to computer thus making model de-
velopment more efficient and less prone to errors. In the fol-
lowing subsections, we present a detailed description of the pro-
posed algorithm.

B. Notation

We use two disjoint sets of data namely, the training data and
the validation data. Training data are used to update neural-net-
work weights during training and validation data are used to
monitor the quality of neural model during training. We define

and as training (learning) and validation data sets during
the th stage, i.e., is a training sample
and is a validation sample. Let rep-
resent neural-network structure inth stage with outputs

, where is the corresponding weight vector. The
range of input parameter space in which the neural model would
be used during design is referred to as input space of interest and
is denoted by . Normalized training error of neural network

at the end of th stage is defined as

(3)

where represents theth norm, is the number of samples
in , and is the error due toth sample in given by

(4)
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where is the th neural-network output at the end
of the th stage training for input sample and is the th
element of . In (4), and are the minimum and
maximum possible values of data in the input space of in-
terest. The objective of neural-network training inth stage is
to find such that is minimized. Normalized validation
error of neural model at the end of th stage training is de-
fined as

(5)

where is the number of samples in and is the
error due to the th sample in , computed using (4). Let
represent user-desired neural model accuracy (validation error).
The objective of the algorithm is to automatically carry out
stage-wise model development process until .

C. Key Aspects of the Algorithm

To begin with, the algorithm considers the original bounded
-dimensional input space of interest as one region. For the

first stage, training data ( ) and validation data ( ) are sys-
tematically generated in in a predefined way (e.g., star distri-
bution). In our work, training and validation data for a given re-
gion are generated as shown in Fig. 1(a). A first stage neural-net-
work with relatively fewer hidden layer neurons is trained
with data samples in , i.e., , . The resulting
neural model is validated (tested) with data samples in, i.e.,

, . The algorithm stops if . Otherwise,
based on the neural-network error criteria, the algorithm auto-
matically takes suitable actions and proceeds to the next stage
of model development.

1) Automatic Sampling and Generation of Training/Valida-
tion Data: Over-learning of the neural network may be de-
tected at the end of theth stage, using error information and

. Over-learning is a phenomenon in which the neural network
memorizes the training data accurately but cannot generalize
well, i.e., is small enough (compared to ) but .
When the algorithm detects over-learning, it dynamically adds
more data samples to the training and validation sets. Moti-
vated by the concepts of sampling techniques based on multino-
mials [20], rational interpolation [21], and error-based data ex-
ploration [22], we developed a unique neural-network-oriented
technique featuring the growth of training and validation sets in
an intertwined way. Utilizing this technique, the algorithm han-
dles the issues of number of additional samples and their dis-
tribution in model input space. The validation sample
with maximum (worst-case) error is identified by

(6)

The worst region to which belongs is further divided
(split) into new subregions. Considering these new regions,

and are updated, i.e.,

(7)

(8)

(a)

(b)

Fig. 1. (a) Training and validation data in a typical subregion of two-
dimensional input space. (b) When the subregion is identified as the worst
region, it is further divided into smaller regions. Newly generated training and
validation data are clearly indicated. Training data (�). Validation data (�).
Validation data in a previous stage and training data in the current stage ().

where and represent the new data samples to be gen-
erated. Each new training input point is obtained
as

(9)

where and are the extreme boundaries of , is
the number of splits after which was formed, is the
number of newly added training points, and is a
diagonal matrix. Each diagonal element ofcould take one of
the values 0, 1, or 1, depending upon the predefined sample
distribution in each subregion. Each new validation input point

is obtained as

(10)
where is the number of newly added validation points and

is a diagonal matrix similar to . Incremental training and
validation data are generated corresponding to the newly added
input points by dynamically driving the data generator, e.g., EM
simulator.

For example, suppose the original two-dimensional (2-D)
input space (region) shown in Fig. 1(a) needs to be split
because the first stage of training did not yield a satisfactory
neural model. We then have , ,
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, and . For the second stage, five new
training samples are generated with

Four new validation samples are generated with

as shown in Fig. 1(b).
2) Automatic Neural-Network Structure Adapta-

tion: Under-learning of the neural network may be detected
after the th stage, using training error and its gradient

. Under-learning is a phenomenon in which
the neural network has difficulties in learning the training data
itself, i.e., is large and is small. When the algorithm
detects under-learning, it dynamically adds more hidden layer
neurons. A larger neural network would then provide increased
freedom to better learn the nonlinearities in training data. If
the neural-network structure has hidden neurons,
with hidden neurons is used by the algorithm
in the th stage. Suggested range for the newly added
hidden neurons is 10%–20% of .

3) Automatic Handling of Large Errors in Dynamically
Generated Samples:In general, most of the microwave
samples have small measurement/simulation errors and a
few samples could even have large errors. A few accidental
large errors could occur in training data during dynamic data
generation of the automatic model development approach. It is
essential to automatically detect these large errors and neglect
them during neural-network training, because there is no place
for human intervention in an automated approach. The large
errors are detected as a special case of under-learning, i.e.,
when continues to be large and remains small for
several consecutive stages even after repeatedly adding hidden
neurons. Once large errors are detected, automatic training
switches from conventional neural-network training algorithms
(e.g., quasi-Newton) to HQN technique.

The objective functions of conventional training algorithms
are formulated in -sense (i.e., ). Although -norm-based
training handles small errors in data, it is misled by large errors.
On the other hand, -norm-based training is robust against large

Fig. 2. Systematic framework of the proposed automatic neural model
development algorithm in the form of a flowchart.

errors, but is not very effective in dealing with small errors [23].
Huber function [24], which is a smooth combination ofand

-norms, is used here for neural-network training. We compute
the per-sample error function in (4) with . Normal-
ized training error of the neural-network structure is re-de-
fined using the Huber function as

(11)

where is the Huber function. The Huber-norm of is
given by

if

if
(12)

where is the Huber constant. By varying, the proportion of
neural-network error functions to be treated inor sense can
be controlled. Consequently, the Huber-norm-based training
objective can be robust against both small and large errors in
data. When accidental large errors are detected in theth-stage
training data, our algorithm switches neural-network training
process to HQN. The HQN algorithm ensures that the network

learns only the original problem behaviors, neglecting
large errors.

4) Overall Automation:At the end of each stage, the algo-
rithm checks for various possible neural-network training situa-
tions and takes relevant actions, e.g., update data, adjust neural-
network size, etc. In the subsequent stage, neural network
is trained with samples in and the neural model is tested
with samples in . A framework of the proposed algorithm
is shown in Fig. 2. We also incorporated a few conservative op-
tions to make the algorithm more general: 1) periodically, after a
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fixed number of stages, incremental training/validation samples
are generated in a randomly chosen sub-region instead of a worst
subregion and 2) the algorithm terminates only if con-
secutively for a given number of stages.

D. Implementation Details

Let , , and represent training error, validation
error, and gradient of the training error of the neural network

at the end of the th stage. Let represent a set of regions
in the neural model input space. The main user inputs to our
algorithm are the user-desired neural model accuracyand
the maximum allowable number of stages . There are other
user-inputs , , , , , , , and . For %, sug-
gested ranges of these constants are , ,

, , , (in % ),
, and . The pseudocode of the algorithm

is presented below.
Initialization: , , is a vertex

of , is the center of , and
ag .
Automatically generate and for all and . There is only
one region, . Train neural network using samples

, , and test the neural model with ,
. Activate Data Generation( ).
Activate Data Generation (): Split into new re-

gions. Delete from and add the new regions to. Update
and , and generate training and validation data for the new

subregions by automatically driving the simulator. Go toAuto-
matic Training.

Automatic Training: . Train using data samples
in . Test the neural model with samples in and , to
obtain and respectively.

if ( ) or ( for consecu-
tive stages) Stop Training .

else if ( ) and ( ), over-
learning is detected. Set 
ag .
if choose worst sample

and identify the corresponding
sub-region . Set and Acti-
vate Data Generation ( ).
else randomly choose a region .
Set . Activate Data Genera-
tion ( ).

else if ( ) and ( for
consecutive stages), under-learning
is detected.
if 
ag , training data
has accidental large errors. Set

, , . Switch
Training Algorithm from quasi-Newton
to HQN. Go to Automatic Training .
else Add Hidden Neurons , i.e.,

. Set , .

ag 
ag .Go to Automatic Training .

else possible local minimum in neural-
network training. Set ,

, . Set 
ag .

Randomly perturb network weights .
Go to Automatic Training .

IV. DEMONSTRATION EXAMPLES

A. Neural Modeling of MESFET

The proposed algorithm is incorporated into our NeuroMod-
eler software [25]. The input spaceof the neural network con-
tains gate-length (), channel thickness (), gate–source voltage
( ), and drain–source voltage (). Drain current ( ) is the
neural-network output. For a user-desired neural model accu-
racy , the number of training and validation samples needed
and their distribution in ( ) space and the neural-net-
work size are not known. The proposed algorithm is used to
develop a neural model to represent the physics-based Khati-
bzadeh and Trew MESFET model of OSA90.1

The algorithm starts with an initial neural network (three-
layer MLP) with hidden neurons. In the first stage,
the algorithm dynamically generates samples to train
the neural network and validation sample to test it.
During subsequent stages, the algorithm automatically decides
the number and distribution of additional training and valida-
tion samples needed and dynamically drives the OSA90 simu-
lator using our OSA90 driver. Extra hidden layer neurons are
also automatically added as needed. For %, we set the
user-inputs of the algorithm as , , , ,

, %, , and . The algorithm
produced a neural model with a validation error %
after eight stages of model development. A total of
training samples and validation samples are used and
the final neural model has hidden neurons.

The neural model is further tested with a large set of inde-
pendent test data never seen during training. The average test
error is observed to be 0.49%, confirming the reliability of the
neural model. Using the manual step-by-step neural modeling
approach, MLP neural networks with 9, 12, and 16 hidden neu-
rons are trained using uniform-grid samples and the average test
errors are reported in Table I. It can be seen that the proposed
algorithm gives more accurate neural models with the same
amount of training data, as compared to step-by-step approach.
This is because the proposed method uses efficient distribution,
i.e., more (less) data are generated in nonlinear (smooth) regions
as shown in Fig. 3.

As a further step, we applied our algorithm to an advanced
nonlayered neural-network structure called the KBNN [5]. For
the MESFET, microwave knowledge in the form of empirical
equations is available [26]. In the KBNN structure, these em-
pirical functions are used as hidden neuron activation functions.
Within four stages of model development, the KBNN achieved
an accuracy of 0.53% using 208 training samples. At the end of
five stages, the KBNN model accuracy is 0.29% and the number
of training samples used is 248. This shows that our algorithm
is applicable to arbitrary nonlayered neural-network structures.
Using KBNN together with the proposed model development al-
gorithm achieved further improved neural model accuracy with
fewer data.

1OSA90, Optimization Syst. Assoc., Dundas, ON, Canada (now Agilent
Technologies, Palo Alto, CA).
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TABLE I
MODEL ACCURACY COMPARISONBETWEEN THEPROPOSEDALGORITHM BASED ON AUTOMATIC SAMPLING AND THE STEP-BY-STEP APPROACHBASED ON

CONVENTIONAL GRID DISTRIBUTION FOR THEMESFET EXAMPLE. MODEL ACCURACY REPORTED FOR THEMANUAL APPROACHIS AN AVERAGE VALIDATION

ERROR OFTHREE NEURAL MODELS WITH 9, 12,AND 16 HIDDEN NEURONS

(a) (b)

(c) (d)

Fig. 3. Intertwined automatic distribution of training data () and validation
data (�) by the proposed algorithm for the MESFET example. (a) First stage,
(b) second stage, (c) third stage, and (d) fourth stage of training. The algorithm
identifies nonlinear subregions of the MESFET input space and automatically
generates more samples in such regions.

B. Embedded Capacitor in Multilayer Printed Circuit Boards

Accurately modeling 3-D EM behaviors of embedded
components [27] used in high-speed multilayer printed circuit
boards (PCB) is important for efficient CAD. In this example,
neural model of an embedded capacitor shown in Fig. 4 is de-
veloped. The relationship of the capacitor is available from
CPU-intensive EM simulations of Ansoft-HFSS simulator.2

2Ansoft HFSS 7.0.11, Ansoft Corporation, Pittsburgh, PA.

Fig. 4. Embedded capacitor used in multilayer PCBs.S-parameter neural
model of the capacitor is developed from 3-D EM data of Ansoft-HFSS using
the proposed algorithm.

TABLE II
COMPARISON OF THETIME TAKEN BY THE PROPOSEDALGORITHM AND

MANUAL STEP-BY-STEP NEURAL MODELING APPROACH FOR THE

EMBEDDED CAPACITOR

The step-by-step neural modeling approach based on manual
data generation is prohibitive because it involves the following
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Fig. 5. Comparison between neural model (—) prediction and training data () for the embedded capacitor. The effect of large errors introduced inS training
data during automatic data generation are neglected by the neural model developed using the proposed algorithm.

tasks: 1) re-drawing the capacitor with new physical parameter
values graphically (or editing simulator input file for every
input vector); 2) submitting and waiting for the CPU-intensive
data computation to finish; 3) viewing simulator output file for
the outputs of interest; and 4) appending the new– sample
to the training or validation data file. These exhaustive tasks
make manual data generation highly time-consuming, human
intensive, and error-prone. The proposed algorithm based on
automatic data generation is used.

The input space of the capacitor neural network includes
length (), thickness (), dielectric constant ( ), and frequency

GHz . Real and imaginary parts of two-port-pa-
rameters and are the neural model outputs. The user
specification of the neural model accuracy is %. In
the first stage, a neural network with hidden neu-
rons is used. A total of 16 training and 1 validation samples are
used. Whenever the automatic algorithm decides to add more
data, it dynamically drives the Ansoft-HFSS simulator using
our HFSS driver. After ten stages, the final neural model
with hidden neurons, 554 training and 136 vali-
dation samples, achieved an accuracy of %. On
the other hand, an MLP neural network with 20 hidden neu-
rons trained using the manual step-by-step neural modeling ap-
proach with 554 uniform grid samples achieved a validation
error of 6.8%. A comparison of training data shows that the
automatic algorithm used 176 training samples in the sub-re-
gion GHz where -parameters exhibit a rela-
tively nonlinear behavior, while the manual uniform-grid sam-
pling used only 128 samples. The manual approach required
768 training samples to achieve a model accuracy of 1%. Neural
model developed by our algorithm is subjected to an indepen-
dent test with a large set of data (8200 samples) never seen
during training and the test error is observed to be 1.04%, fur-
ther confirming the reliability of our algorithm.

Fig. 6. Circuit diagram of a power amplifier used in wireless communication
systems.

A time comparison between the proposed algorithm and
the step-by-step manual neural modeling approach is shown
in Table II. It can be seen that the human time required in the
case of the proposed algorithm is very small as compared to the
manual approach. The reason is that, the data generation in our
algorithm is automatic as opposed to manual data generation in
step-by-step approach. The CPU time required by our approach
is also relatively smaller. This is because the manual approach
requires relatively larger number of training samples to achieve
similar model accuracy.
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Fig. 7. Three-layer MLP neural-network structure used by the proposed
algorithm to model the nonlinear behaviors of the power amplifier circuit.

During automatic data generation using HFSS, a few large
accidental errors are detected in . These errors can be at-
tributed to simulations in extreme locations of the model input
space. The proposed algorithm successfully detected these non-
convergence simulation errors and automatically switched the
neural-network training process from quasi-Newton algorithm
to HQN. The resulting neural model neglected these large er-
rors and modeled only the nonerroneous data samples as can be
seen in Fig. 5.

C. Nonlinear Modeling of a Power Amplifier

This example is for the purpose of illustrating the applica-
bility of our algorithm to circuit modeling problems. The algo-
rithm is used to develop a neural model to represent nonlinear
behaviors of a power amplifier circuit used in wireless com-
munication systems. The amplifier shown in Fig. 6 has eight
n-p-n bipolar junction transistors (BJTs) represented by two in-
ternal nonlinear models Q34 and Q37 of Agilent-ADS.3 Input
parameters for the power amplifier neural network are power
input ( ), input bias voltage ( ), resistive load ( ), and
input frequency . Outputs of the neural model include power
outputs at fundamental frequency (), second harmonic ( ),
and third harmonic ( ). The relationship of the amplifier
is originally produced by Agilent-ADS simulator. A three-lay-
ered MLP neural-network structure shown in Fig. 7 is used by
the proposed algorithm to model microwave characteristics of
the power amplifier circuit.

The input parameter space of interestis bounded by
to 20 dBm, to 4 V, to 140 , and

to 4.2 GHz. To facilitate dynamic data generation
during neural-network training, we implemented the ADS driver
to automatically drive Agilent-ADS. After 28 training stages, a
neural network with 60 hidden neurons achieved an accuracy
of 1.25%. A total of 1758 training and 436 validation samples
are used. A comparison of neural model prediction of the am-
plifier outputs with original data from ADS is shown in Fig. 8.
A quantitative relationship between amount of training data and
neural model accuracy, as provided by the proposed algorithm
is shown in Fig. 9.

3ADS 1.5, Agilent Technologies, Palo Alto, CA.

(a)

(b)

(c)

Fig. 8. Comparison of the neural model prediction (—) of the amplifier power
outputs at: (a) fundamental, (b) second harmonic, and (c) third harmonic, with
original Agilent-ADS data (symbols) for different values ofP (V = 3 V
andR = 80 
).

Fig. 9. Neural model accuracy versus number of training samples for the
power amplifier circuit. This quantitative relationship is provided by the
proposed algorithm.
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V. CONCLUSION

We proposed a robust algorithm for automatic development
of neural-network models for RF/microwave devices and cir-
cuits. It has been used to build neural models, starting with zero
or minimal amounts of training and validation data. In each
stage of model development, the algorithm can add samples
or neurons as needed. New samples were dynamically gener-
ated during training by automatic driving of simulation tools.
The proposed technique uses relatively fewer samples than the
step-by-step approach to achieve similar model accuracy, and
significantly reduces the human time. It is applicable to layered
neural networks as well as arbitrary structures (e.g., KBNN).
Accurate neural model development is made possible even in
the presence of accidental large errors in training data. The algo-
rithm can automatically produce a neural model with user-spec-
ified accuracy, without requiring the user’s understanding of
the neural-network issues. The technique provides a systematic
framework for automated neural modeling approach, which can
be incorporated into the overall microwave CAD environment.
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