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Abstract—For the first time, we propose a robust algorithm Neural model developmentinvolves several subtasks like data
for automating the neural-network-based RF/microwave model generation, neural-network selection, training, and validation
development process. Starting with zero amount of training data [13]. Conventionally, these subtasks are manually carried out

and then proceeding with neural-network training in a stage-wise . . .
manner, the algorithm can automatically produce a neural model in a sequential manner independent of one another. Such an

that meets the user-desired accuracy. In each stage, the algorithm @PProach referred to as the step-by-step neural modeling ap-
utilizes neural-network error criteria to determine additional ~ proach requires intensive human effort. Modeling is just one
training/validation samples required and their location in model aspect of microwave CAD and the designers wish to develop
input lspage-_Th? a!gpnthg dyr;amlctallyé genﬂa:e&? th?Ste netvv ollata neural models even though they do not have enough exposure
samples during training, by automatic driving of simulation tools ) ; : L :
(e.g., OSA90, Ansoft-HFSS, Agilent-ADS). Initially, fewer hidden tc])C neurall net(\jN(l)[jk Isslues. Thtere sa de::nlte need for automfatllon
neurons are used, and the algorithm adjusts the neural-network 0 neqra mo e. evelopment process. OW_eVera asucFess utau-
size whenever it detects under-learning. Our technique integrates tomation technique needs to address multiple complicated and
all the subtasks involved in neural modeling, thereby facilitating interdependent challenges.

a more efficient and automated model development framework. Microwave modeling problems are often highly nonlinear

It significantly reduces the intensive human effort demanded by 5nd multidimensional. The number of samples needed for

the conventional step-by-step neural modeling approach. The : . . .
algorithm inherently distinguishes nonlinear and smooth regions developing a neural model with desired accuracy and their

of model behavior and uses relatively fewer samples in smooth distribution in the input space are not obvious. While too
subregions. It automatically deals with large data errors that can many samples are expensive (e.g., three-dimensional (3-D)
occur during dynamic sampling by using Huber quasi-Newton EM simulations), too few samples lead to over-learning of the
technique. The algorithm is demonstrated through practical neural network. The neural-network size required to develop an

microwave device and circuit examples. accurate model is not knovenpriori. Too many hidden neurons
Index Terms—Design automation, modeling, neural-network need more CPU and too few neurons result in under-learning
applications, optimization. of the neural network. Microwave data obtained from mea-

surement/simulation could have a few accidental large errors
that can result in nonreliable neural models. In an automated
procedure, there is no place for human intervention based on
ECENTLY, a computer-aided-design (CAD) approachroblem-specific knowledge. It is, therefore, mandatory for
based on neural networks has been introduced for nire automation technique to take an algorithmic approach to
crowave modeling and design [1]-[3]. Neural networks amimultaneously handle the above-mentioned issues.
trained from measured/simulated microwave data and theSeveral notable techniques were proposed in the microwave
resulting neural models are used during microwave desigrea. Knowledge-based neural networks (KBNNSs) [5], hierar-
[2]-{4]. Neural modeling techniques have been applied toghical neural networks [6], difference method [14], and the prior
wide variety of microwave problems, e.g., coplanar waveguid@owledge input method [15] utilize existing microwave knowl-
(CPW) components [4], transistors [5], transmission lines [6édge to improve neural model accuracy with fewer data. A va-
bends [7], filters [8], and amplifiers [9]. Significant speed-upiety of sample distributions, e.g., star distribution [8] and cen-
of CAD by using neural models in place of CPU-intensivéral-composite distribution [14], were used. The mulilayer per-
electromagnetic (EM)/physics models resulted in a drive teptrons neural network (MLPNN) process [13] discussed the
develop advanced neural modeling techniques [10]-[12].  possibility of neural-network size adjustment. Research in the
neural-network area also led to several techniques, e.g., CasCor
[16] and CasPer [17] begin with a minimal neural network and
Manuscript received March 31, 2001, revised August 6, 2001. This work Wgéjd neurons during training, and techniques based on robust sta-
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training data and a small network, neural model developmemtoided in an automated approach. These challenges are the mo-
proceeds in a stage-wise manner. In subsequent stages, the aiegtion for our research toward automation.

rithm can perform dynamic sampling and neural-network struc-

ture adaptation. Accidental large errors in training data that occlli. A UTOMATIC NEURAL MODEL DEVELOPMENT ALGORITHM

during dynamic sampling would be successfully dealt with. A. Introduction

Contrary to the step-by-step approach, the proposed auto-
o ) matic neural model development algorithm focuses on the mu-
Let represent aiV,. vector containing physical parameter§a| dependence of various subtasks like data generation, neural-
of a microwave device/circuit, e.g., gate length of an FET4 ethetwork size, neural-network training, and validation. Our al-
representan,, vector containing the responses of the device/Cigrrithm links these subtasks through neural-network learning
cuit under consideration, e.g., drain current of an FET. Thenomena (e.g., over-learning, under-learning) and integrates
EM/physics relationship betwegrandz can be represented ashem into one unified process. The integrated process is comput-
y = y(z). 1) erize_d and is carried ou_t autom_a_tically in a sFage—wise f_ash_ion.
Within a stage, the algorithm facilitates periodic communication
This relation can be highly nonlinear and multidimensionahetween various subtasks, thus enabling adjustment or enhance-
The theoretical model fag(x) may be computationally too in- ment in the execution of a subtask based on the feedback from
tensive for online microwave design. A fast neural model is dether subtasks. As a result, each stage could involve dynamic
veloped by training a neural network with a set of measured/siineremental data generation, neural-network size adjustment,
ulated sample$(z,, y,), z, € L}, wherey, represents mea- neural-network training with training data, and neural model
sured/simulated output for sample inptit, and L represents testing with validation data. The algorithm has built-in simu-
the set of training (learning) data. Let the input—output mappitation drivers (e.g., OSA90 driver, HFSS driver, ADS driver)

II. NEURAL MODELING PROBLEM AND AUTOMATION |ISSUES

by the neural network be defined as for facilitating automatic data generation during neural-network
o training. Accidental large errors that could occur in training data
¥ =y(z, w) ) during dynamic data generation are detected and the effect of

where § is an N, vector of neural model outputs and these errors is neglected by automatic switching to Huber quasi-
y . . . . .

represents trainable parameters (weights) of the neural-netwdivton (HQN) training algorithm. The technique establishes

structureS. The objective of training is to fines that minimizes & guantitative link between neural model accuracy, the number

the error between neural model outpgitand training datg. and distribution of training/validation data, and the neural-net-
In order to highlight the critical issues that need to pwork size. Automation of the model development process shifts

addressed by an automation technique, we briefly compdf€ Workload from human to computer thus making model de-
and contrast step-by-step manual approach versus automat/§iePment more efficient and less prone to errors. In the fol-
In the step-by-step approach, there is a scope for appling‘.j"'ng subsgctlons, we present a detailed description of the pro-
problem-specific human experience in sampling the input spa@sed algorithm.
for training data generation, and in testing the quality of th‘g Notation
trained neural model. Conversely, an automated approach must
have a built-in mechanism for sampling issues such as numbelVe use two disjoint sets of data namely, the training data and
of samples and their distribution. The technique must incdfe validation data. Training data are used to update neural-net-
porate a systematic neural-network training and simultanedigrk weights during training and validation data are used to
model testing, by growing training and validation data sets in &onitor the quality of neural model during training. We define
intertwined fashion. It must be able to distinguish nonlinear add’ andV* as training (learning) and validation data sets during
smooth regions of the model and generate samples accordin§lg +th stage, i.e.L* = {z;|(z;, y;) is a training sample

The next issue is neural-network size, i.e., number of hidd@hd VE = {=;|(z;, y;) is a validation sample Let S* rep-
layer neurons. In the manual approach, network size determifgsent neural-network structureith stage with outputg® =
tion is carried out using a tedious trial-and-error process. On tier, w*), wherew" is the corresponding weight vector. The
other hand, an automation technique needs a systematic metfigtige of input parameter space in which the neural model would
ology for adapting neural-network size, e.g., adding neurohg used during design is referred to as input space of interest and
based on neural-network errors. Another key issue is the prissdenoted byfzy. Normalized training error of neural network
ence of accidental large errors in training data caused by equi-at the end ofkth stage is defined as

ment limitations (e.g., measurements at extreme frequencies) ) 1 )

i imulations with | Bt =5 . (egwh)” 3)
and nonconvergence of simulators (e.g., simulations with in- r = N} q
puts in extreme locations). In the step-by-step approach, it may @q €LY

be possible (with great difficulty) to manually check and reyherep represents thgth norm, N is the number of samples

move erroneous data samples from training set. A successfur* ande, (w") is the error due tgth sample inL* given by
automated approach, therefore, needs to implement a periodic p

check for large errors and requires a training technique that can 1 |1 Ny
yield reliable neural models even in the presence of such errcﬁ‘s(wk) = e(zy, wk) =N |
In summary, a lot of manual effort and periodic human deci- v | P53

sions are involved in the step-by-step approach that needs to be 4)

(g, w*)—yg; |”

Ymax, j —Ymin, j
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whereg; (z,, w"*) is the jth neural-network output at the end 04 @ ¢4
of the kth stage training for input sampde, andy,; is thejth T

element Ofyq. IN (4), Ymin, ; @NAYmax, ; are the minimum and
maximum possible values of; data in the input space of in-
terest. The objective of neural-network trainingiith stage is

to find w* such thatE¥ is minimized. Normalized validation X
error of neural modef* at the end ofth stage training is de- 2,2)
fined as
Ef = L (e (wk))p 5)
YN = ¢ ©00) @ @ “0)

’ (@
where N¥ is the number of samples ¥* and e, (w*) is the ® Py
error due to thetth sample int’*, computed using (4). Lek, ? ™
represent user-desired neural model accuracy (validation error). PN
The objective of the algorithm is to automatically carry out (X P X Q
stage-wise model development process uiifil< E,. Qs /l

¢ & ®
C. Key Aspects of the Algorithm ‘P\ P; S
5
To begin with, the algorithm considers the original bounded X b X

N,-dimensional input space of interdg$ as one region. For the ‘B / ! ‘(}
first stage, training datal{) and validation datay(!) are sys- P ! Py ! ‘

tematically generated iR, in a predefined way (e.qg., star distri-
bution). In our work, training and validation data for a given re- (b)

gion are generated as shown in Fig. 1(a). Afirst stage neural-r@t: 1. (a) Training and validation data in a typical subregion of two-
work St with relatively fewer hidden layer neurons is trainedimensional input space. (b) When the subregion is identified as the worst
with data samples 6!, ., (z;, ),z € L". The resulting (205" 1%1"er 10 i sialr reins. el generate g nd
neural model is validated (tested) with data samplég’ini.e., validation data in a previous stage and training data in the current e (

(25, y;),z; € V' The algorithm stops i} < E,. Otherwise,

based on the neural-network error criteria, the algorithm auto-

matically takes suitable actions and proceeds to the next stgggereL e andV " represent the new data samples to be gen-

of model development. erated. Each new training input poiste, € L™ is obtained
1) Automatic Sampling and Generation of Training/Validags

tion Data: Over-learning of the neural network may be de-

tected at the end of theth stage, using error informatidty and

E* . Over-learning is a phenomenon in which the neural network z, .., = z*+P; M, i=1,2, ..., pew (9)
memorizes the training data accurately but cannot generalize 2

well, i.e., E¥ is small enough (compared f4;) but E* > E¥.

When the algorithm detects over-learning, it dynamically ad@¢heres,,;, and z,,. are the extreme boundaries Bf, = is
more data samples to the training and validation sets. Mofire number of splits after whicR* was formed e, is the
vated by the concepts of sampling techniques based on multin@mber of newly added training points, aft is a N, x N,
mials [20], rational interpolation [21], and error-based data egiagonal matrix. Each diagonal element®fcould take one of
ploration [22], we developed a unique neural-network-orienteéfe values 0+1, or—1, depending upon the predefined sample
technique featuring the growth of training and validation sets iistribution in each subregion. Each new validation input point
an intertwined way. Utilizing this technique, the algorithm hang € V»*v js obtained as

dles the issues of number of additional samples and their dis-

tribution in model input space. The validation samptec V*

with maximum (worst-case) error is identified by Toew =2 +Q, ‘”mx—:fmin’ F=1,2, ..., Muew
2r
* = arg ma ( k) (6) (10)
T akg Bax al® W) wherem. is the number of newly added validation points and

_ . . o Q; is a diagonal matrix similar t#;. Incremental training and
The worst regioni* to whichz™ belongs is further divided validation data are generated corresponding to the newly added
(split) into2™= new subregions. Considering these new regiongput points by dynamically driving the data generator, e.g., EM

L* andV* are updated, i.e., simulator.
For example, suppose the original two-dimensional (2-D)
LMY=k Ly (7) input space (region) shown in Fig. 1(a) needs to be split

§ § because the first stage of training did not yield a satisfactory
Vit =y UVneW (8) neural model. We then havwe' = [2 2|7, zm = [0 0],
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Tmax = [4 4]%, andr = 0. For the second stage, five new @ : 2
training samples are generated with i | Addnew [ lupdateL*and V¥ § !
! ) ;
T T ] regions to R to include new g1
00 I Ro € R, Initialize L', V', N} I , data input points | B !
P, — ' [} g
! 0 0 Train and test §' E Dfelete;;* l g
- rom an
P 0 0 :| R*=R, , ) Generate new % :
— ! ini
2 = B . . i [SplitkR*into || lrainingand g
I 0 1 -—[ Activate data generation |—'->: new regions validation samples § !
1 0 e L PP PR PP Y
Ps = ' !
0 0 ¥ H
i f : g
r Large error i - g !
P, = 0 O:| handling using Add neurons | } 2!
L 01 Huber quasi-Newton Nt =Ni+6 | : !
- 4 | (e v ] £
Py = -0 . N = NF Large T , £
Lo e H e
V"”—V* training W 2
Four new validation samples are generated with - data ?
Q L0 | Under-learning detected
= nder-learnin etecte:
1= o -1 :
0, = [1 0}
5 =
L 0 1 || Kdentify or NEL ok Over-learning
-1 0 choose R* h _~h detected
Q3 - 0 1
r Fig. 2. Systematic framework of the proposed automatic neural model
Q4 _ -1 0} development algorithm in the form of a flowchart.
0 -1

errors, but is not very effective in dealing with small errors [23].
Huber function [24], which is a smooth combination/efand
Adapta- . o
-norms, is used here for neural-network training. We compute
t

after thekth stage, using training errak¥ and its gradient . eper—_sa_lmple errorfunctlma(w") in (4) with p = 2@._Normal-
AEF = E¥ 1~ EF Under-leaming is a phenomenon in Whidjzed training error of the neural-network structufe is re-de-
the neural network has difficulties in learning the training da

itself, i.e., E¥ is large andA E¥ is small. When the algorithm
detects under-learning, it dynamically adds more hidden layer
neurons. A larger neural network would then provide increased
freedom to better learn the nonlinearities in training data. \}&herep(-) is the Huber function. The Huber-norm@zf(w’“) is
the neural-network structur$* hasN;® hidden neuronsg*+! given by

with N = N} + § hidden neurons is used by the algorithm

as shown in Fig. 1(b).
2) Automatic Neural-Network Structure
tion: Under-learning of the neural network may be detecté

éped using the Huber function as

Z p[eq(wk)]

x, CL*

1
EF= — 11

in the k& + 1th stage. Suggested range for the newly added [eq(wk)]2/2, if [e,(wh)]| < @
hidden neurons is 10%-20% ofV}. pleg(w)] = 2 (12)
3) Automatic Handling of Large Errors in Dynamically B ey (wh)] — - if |eq(w")| > @

Generated Samplesin general, most of the microwave
samples have small measurement/simulation errors andwvfaere® is the Huber constant. By varying, the proportion of
few samples could even have large errors. A few accidentadural-network error functions to be treated,ior [, sense can
large errors could occur in training data during dynamic date controlled. Consequently, the Huber-norm-based training
generation of the automatic model development approach. Ibisjective can be robust against both small and large errors in
essential to automatically detect these large errors and negtimtia. When accidental large errors are detected iktihstage
them during neural-network training, because there is no placaining data, our algorithm switches neural-network training
for human intervention in an automated approach. The largeocess to HQN. The HQN algorithm ensures that the network
errors are detected as a special case of under-learning, i%! learns only the original problem behaviors, neglecting
when E¥ continues to be large and EF remains small for large errors.
several consecutive stages even after repeatedly adding hiddef) Overall Automation: At the end of each stage, the algo-
neurons. Once large errors are detected, automatic trainiitgm checks for various possible neural-network training situa-
switches from conventional neural-network training algorithmsons and takes relevant actions, e.g., update data, adjust neural-
(e.g., quasi-Newton) to HQN technique. network size, etc. In the subsequent stage, neural netgifork

The objective functions of conventional training algorithms trained with samples ia**+! and the neural model is tested
are formulated i,-sense (i.ep = 2). Althoughl,-norm-based with samples i7*+1. A framework of the proposed algorithm
training handles small errors in data, it is misled by large errois.shown in Fig. 2. We also incorporated a few conservative op-
Onthe other hand; -norm-based training is robust against largéons to make the algorithm more general: 1) periodically, after a
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fixed number of stages, incremental training/validation samples  Randomly perturb network weights
are generated in arandomly chosen sub-regioninstead ofaworst Go to Automatic Training
subregion and 2) the algorithm terminates onlgff < E, con-
secutively for a given number of stages.

w”.

IV. DEMONSTRATION EXAMPLES
A. Neural Modeling of MESFET

The proposed algorithm is incorporated into our NeuroMod-
Let EF, E¥, and AE} represent training error, validationeler software [25]. The input spageof the neural network con-

error, and gradient of the training error of the neural netwotkins gate-lengthl], channel thickness:§, gate—source voltage

Sk at the end of théth stage. LetR represent a set of regionS(Ug), and drain—source voltage4). Drain current {;) is the

in the neural model input space. The main user inputs to aural-network outpuj. For a user-desired neural model accu-

algorithm are the user-desired neural model accutagynd racy E,, the number of training and validation samples needed

the maximum allowable number of stages.. There are other and their distribution ini( a, v,, v4) Space and the neural-net-

user-inputsk., 3, n, k., o, AE, ky, andke. ForEq = 1%, sug- work size are not known. The proposed algorithm is used to

gested ranges of these constantslare k. < 5,0 < 2 < 1, develop a neural model to represent the physics-based Khati-

1>1,4<k <6,2<a<4,001<AE<01(n%ES), bzadehand Trew MESFET model of OSADO.

1 <k, <6,and4 < k. < 6. The pseudocode of the algorithm - The algorithm starts with an initial neural network (three-

is presented below. _ layer MLP) with N} = 9 hidden neurons. In the first stage,
Initialization: k = 1, N;, = No, L* = {z;|z; i a vertex the algorithm dynamically generat8§" = 16 samples to train

of Ro}, V! = {g;]x; is the center ofRo}, andflag = 0. the neural network andv! = 1 validation sample to test it.

Automatically generatg; andy, for all z; andz;. Thereis only pyring subsequent stages, the algorithm automatically decides

one region,f £ R. Train neural networkS* using samples the number and distribution of additional training and valida-

(‘”11‘7 y;), % € L*, and test the neural model witl;, y;), #; €  tion samples needed and dynamically drives the OSA90 simu-

V. Activate Data Generatio(i). lator using our OSA90 driver. Extra hidden layer neurons are

_Activate Data GenerationK): Split 1 into 27 new re- 5,54 atomatically added as needed. Bgr= 0.5%, we set the
gions. DeleteRk from $ and add the new regions #. Update user-inputs of the algorithmds = 1, 3 = 1, = 1, k, = 5

L* andV*, and generate training and validation dataforthe new _ 5 Az — 0.05% k. — 1 andk. — 6. The algorithm
S“bfegior!s.by automatically driving the simulator. Gotgto- produc’ed a neural m(;dgl with’a valideation erigf = 0.48%

matic Tra|n_|ng L ks after eight stages of model development. A total\gf = 318

. Alfctomat'c Training: k = k+1.lTra|nS uswj\h%]fdata sakmples training samples an&/3 = 90 validation samples are used and

n L.' T%St the Eeural m_odel with samples i and V=, to the final neural model ha&'; = 16 hidden neurons.

obtain£;* and &, respectively. The neural model is further tested with a large set of inde-
pendent test data never seen during training. The average test
error is observed to be 0.49%, confirming the reliability of the
neural model. Using the manual step-by-step neural modeling
approach, MLP neural networks with 9, 12, and 16 hidden neu-

D. Implementation Details

if (k> kuax) Of ( E¥ < E, for
tive stages) Stop Training

k. consecu-

else if

else if (EF < BE,) and ( E¥ > nEy,), over-
learning is detected. Set flag = 0.
if ((k % k.) # 0) choose worst sample
z* € V¥ and identify the corresponding

sub-region  R*. Set NS*' = NF and Acti-
vate Data Generation ( R*).
else randomly choose a region R e R
Set Nt = NF. Activate Data Genera-
tion ( R*).

(EF > aFE,) and ( AEF < AE for &,
consecutive stages), under-learning
is detected.
if ((flag % ke) = 0), training data

has accidental large errors. Set

NP = NF, LR = [+ VR = VR Switch
Training Algorithm from quasi-Newton
to HON Go to Automatic Training
else Add Hidden Neurons , i.e.,
Nk 4+ 6. Set LM! Lk, yk+t
flag = flag + 1.Go to Automatic Training

k+1
Nh
Vk

else possible local minimum in neural-

Nk+l
1B
VE, Set

NE,
= 0.

network training. Set

Lk+1 Lk, Vk-l—l ﬂa!]

rons are trained using uniform-grid samples and the average test
errors are reported in Table I. It can be seen that the proposed
algorithm gives more accurate neural models with the same

amount of training data, as compared to step-by-step approach.
This is because the proposed method uses efficient distribution,
i.e., more (less) data are generated in nonlinear (smooth) regions
as shown in Fig. 3.

As a further step, we applied our algorithm to an advanced
nonlayered neural-network structure called the KBNN [5]. For
the MESFET, microwave knowledge in the form of empirical
equations is available [26]. In the KBNN structure, these em-
pirical functions are used as hidden neuron activation functions.
Within four stages of model development, the KBNN achieved
an accuracy of 0.53% using 208 training samples. At the end of
five stages, the KBNN model accuracy is 0.29% and the number
of training samples used is 248. This shows that our algorithm
is applicable to arbitrary nonlayered neural-network structures.
Using KBNN together with the proposed model development al-
gorithm achieved further improved neural model accuracy with
fewer data.

10SA90, Optimization Syst. Assoc., Dundas, ON, Canada (now Agilent
Technologies, Palo Alto, CA).
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TABLE |
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MODEL ACCURACY COMPARISON BETWEEN THE PROPOSEDALGORITHM BASED ON AUTOMATIC SAMPLING AND THE STEP-BY-STEP APPROACHBASED ON
CONVENTIONAL GRID DISTRIBUTION FOR THEMESFET EXAMPLE. MODEL ACCURACY REPORTED FOR THEMANUAL APPROACHIS AN AVERAGE VALIDATION
ERROR OFTHREE NEURAL MODELSWITH 9, 12,AND 16 HIDDEN NEURONS

Proposed Automatic Neural Manual Step-by-Step Neural
Model Development Algorithm Modeling Approach
Stage No. No. of Training | No. of Hidden | Action taken at | Model Accuracy | No. of Training | Model Accuracy
(k) Samples (N;}) | Neurons (N}) |theendof Stage | (E! in %) Samples used (%)
1 16 9 Add Samples 23.38 16 25.74
2 81 9 Add Samples 6.64 81 8.05
3 146 9 Add Neurons 432
144 6.42
4 146 12 Add Samples 3.54
5 211 12 Add Samples 1.82 225 3.20
6 256 12 Add Samples 0.90 256 1.28
7 318 12 Add Neurons 0.75
320 0.75
8 318 16 Stop 048
0 0 -
§ b 5" -1 X X
t 2 S 5| <— 2" Layer
E X g 4 . 3
g3 g -3
2 f % x <4— Metal Plane
3 4 £ 4
S
3 : . -5
0 1 2 3 4 5 0 1 2 3 4 5 <— 1% Layer
Drain-Source Voltage Drain-Source Voltage
() (b)
0 * * 0 *——o—o <«—— Ground
o X x o x ¢Xe%e
214 . . x g13 PRI x
S X X S 5 X X
¢ 3 . . g 3 .
g 3 g 3
% %
g -4 4 x x g -4 1 % x Fig. 4. Embedded capacitor used in multilayer PCBsparameter neural
s e ‘ 5 R model of the capacitor is developed from 3-D EM data of Ansoft-HFSS using
0 ) ) 5 4 5 0 . . 3 . . the proposed algorithm.

Drain-Source Voltage Drain-Source Voltage

(© (d)

Fig. 3. Intertwined automatic distribution of training da#®) @nd validation
data () by the proposed algorithm for the MESFET example. (a) First stage,
(b) second stage, (c) third stage, and (d) fourth stage of training. The algorithm

TABLE I
COMPARISON OF THETIME TAKEN BY THE PROPOSEDALGORITHM AND
MANUAL STEP-BY-STEP NEURAL MODELING APPROACH FOR THE
EMBEDDED CAPACITOR

identifies nonlinear subregions of the MESFET input space and automatical Proposed Automatic Model Manual Step-By-Step Neural
generates more samples in such regions.
Development Algorithm Modeling Approach

B. Embedded Capacitor in Multilayer Printed Circuit Boards Human Time | CPUTime | Human Time |  CPU Time

Accurately modeling 3-D EM behaviors of embedded
components [27] used in high-speed multilayer printed circui 5 min 1158 min 498 min 1625 min
boards (PCB) is important for eff|C|en.t CAD. In th|s (.axam'ple, Total Time 1163 min 2123 i
neural model of an embedded capacitor shown in Fig. 4 is dt

veloped. Thay(x) relationship of the capacitor is available from

CPU-intensive EM simulations of Ansoft-HFSS simulator. .
The step-by-step neural modeling approach based on manual

2Ansoft HFSS 7.0.11, Ansoft Corporation, Pittsburgh, PA. data generation is prohibitive because it involves the following
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Fig. 5. Comparison between neural model (—) prediction and training dgtéo( the embedded capacitor. The effect of large errors introduc&g.itraining
data during automatic data generation are neglected by the neural model developed using the proposed algorithm.

tasks: 1) re-drawing the capacitor with new physical parameter I"P“‘\ Port 1\ /P"“Q ButP“‘
values graphically (or editing simulator input file for every [> —r'YY\—|

input vector); 2) submitting and waiting for the CPU-intensive > R,
data computation to finish; 3) viewing simulator output file for " v _I_ VJ_

the outputs of interest; and 4) appending the new sample Viin o < <

IIH
|||——-|
—]

to the training or validation data file. These exhaustive tasks
make manual data generation highly time-consuming, human
intensive, and error-prone. The proposed algorithm based on
automatic data generation is used.

The input space: of the capacitor neural network includes
length ), thickness{), dielectric constant.), and frequency
(f = 0.1-20 GHz). Real and imaginary parts of two-pditpa-
rametersS;; andS;, are the neural model outpugs The user
specification of the neural model accuracyfig = 1.25%. In o
the first stage, a neural netwos with N} = 12 hidden neu- L
rons is used. A total of 16 training and 1 validation samples are Port 2
used. Whenever the automatic algorithm decides to add more ¥ | e v
data, it dynamically drives the Ansoft-HFSS simulator using Vea=2V '\% '} '} '}
our HFSS driver. After ten stages, the final neural masi!
with N3 = 20 hidden neurons, 554 training and 136 vali- L Il Il I
dation samples, achieved an accuracyfdf = 0.92%. On
the other hand, an MLP neural network with 20 hidden neu- S y o o
rons trained using the manual step-by-step neural modeling ;gr.nS.chwt diagram of a power amplifier used in wireless communication
proach with 554 uniform grid samples achieved a validation

error of 6.8%. A comparison of training data shows that the 5 ime comparison between the proposed algorithm and
automatic algorithm used 176 training samples in the sub-gg step-by-step manual neural modeling approach is shown
gion f € (0.1 — 3 GHz) where S-parameters exhibit a rela-in Taple I1. It can be seen that the human time required in the
tively nonlinear behavior, while the manual uniform-grid samease of the proposed algorithm is very small as compared to the
pling used only 128 samples. The manual approach requit@@dnual approach. The reason is that, the data generation in our
768 training samples to achieve a model accuracy of 1%. Neus@lorithm is automatic as opposed to manual data generation in
model developed by our algorithm is subjected to an indepesiep-by-step approach. The CPU time required by our approach
dent test with a large set of data (8200 samples) never séenlso relatively smaller. This is because the manual approach
during training and the test error is observed to be 1.04%, fuequires relatively larger number of training samples to achieve
ther confirming the reliability of our algorithm. similar model accuracy.
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Fig. 7. Three-layer MLP neural-network structure used by the propose 0 '\%

algorithm to model the nonlinear behaviors of the power amplifier circuit. 20 _M
During automatic data generation using HFSS, a few larg< 40 1

accidental errors are detected$n,. These errors can be at- 60 WM

tributed to simulations in extreme locations of the model inpu e T

space. The proposed algorithm successfully detected these n¢ 80  Pin=-20dBm

convergence simulation errors and automatically switched th _jg9

Py (

neural-network training process from quasi-Newton algorithrr 0.7 12 1.7 2.2 2.7 3.2 3.7 4.2
to HQN. The resulting neural model neglected these large e f (GHz)
rors and modeled only the nonerroneous data samples as can be ()

seen in Fig. 5. 0-

C. Nonlinear Modeling of a Power Amplifier 20 4

This example is for the purpose of illustrating the applica _ .40
bility of our algorithm to circuit modeling problems. The algo- £
rithm is used to develop a neural model to represent nonline%
behaviors of a power amplifier circuit used in wireless com™ -804
munication systems. The amplifier shown in Fig. 6 has eigt 100 - 3
n-p-n bipolar junction transistors (BJTs) represented by two ir Pin=-20 dBm
ternal nonlinear models Q34 and Q37 of Agilent-AB81put -120 T T T T T T T
parameters for the power amplifier neural network are powe 07 12 17 22 27 32 37 42
input (P,,), input bias voltage¥y;..), resistive load &), and f(GHz)
input frequency f). Outputs of the neural model include power ()

OUtPUt_S at fundamental frequendyy), S_econ(_j harmomcﬂ?f)_’ Fig. 8. Comparison of the neural model prediction (—) of the amplifier power
and third harmonic®s ). They(x) relationship of the amplifier outputs at: (a) fundamental, (b) second harmonic, and (c) third harmonic, with
is originally produced by Agilent-ADS simulator. A three-lay-criginal Agilent-ADS data (symbols) for different values B (Vam = 3 V
ered MLP neural-network structure shown in Fig. 7 is used By9% = 80 -

the proposed algorithm to model microwave characteristics of

the power amplifier circuit. 10
The input parameter space of inter&gtis bounded by, = —
—20 to +20 dBm, Vg, = 2to 4V, Ry, = 20 to 1409, and <
f = 0.7 to 4.2 GHz. To facilitate dynamic data generation Lhe' 6 |
during neural-network training, we implemented the ADS driver ¢
to automatically drive Agilent-ADS. After 28 training stages, a ~ § 4
neural network with 60 hidden neurons achieved an accuracy 3 , |
of 1.25%. A total of 1758 training and 436 validation samples
are used. A comparison of neural model prediction of the am- ) : : : :
plifier outputs with original data from ADS is shown in Fig. 8. 456 585 650 1134 1417 1758 2000

A quantitative relationship between amount of training data and
neural model accuracy, as provided by the proposed algorithm

is shown in Fig. 9. Fig. 9. Neural model accuracy versus number of training samples for the
power amplifier circuit. This quantitative relationship is provided by the
3ADS 1.5, Agilent Technologies, Palo Alto, CA. proposed algorithm.

Number of Training Samples
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V. CONCLUSION [16] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning archi-
. . tecture,” inAdvances in Neural Information Processjilg S. Truretzky,
We proposed a robust algorithm for automatic development  Ed. San Mateo, CA: Morgan Kauffman, 1990, vol. Il, pp. 524-532.

Of neural_network models for RF/mlcrowave dev|ces and Clr_[17] N. K. Treadgold and T. D. Gedeon, “EXtending CasPer: A regression

. . . . survey,” inProc. Int. Neural Inform. Processing Conbunedin, New
cuits. It has been used to build neural models, starting with zero Zea|a),/1d, Nov. 1997, pp. 310-313. g &=on

or minimal amounts of training and validation data. In eachi18] D. S. Chen and R. C. Jain, “A robust back propagation learning algo-
stage of model development, the algorithm can add samples gthprg fzg;ﬂc;g’“Magyprl"ggTa“O”'TEEE Trans. Neural Networksol.
or neurons as needed. New samples were dynamically genefe] c.T. Leung and T. W. S. Chow, “Noise robustness enhancement using

ated during training by automatic driving of simulation tools. fourth-order cumulants cost function,” iProc. IEEE Int. Neural Net-

. . works Conf, Washington, DC, June 1996, pp. 1918-1923.
The proposed technique uses relatively fewer samples than tr[%] J.D. Geest. T. Dhaene, N. Fache, and D. D. Zutter, “Adaptive sampling

step-by-step approach to achieve similar model accuracy, and " algorithm for accurate modeling of general interconnection structures,”
significantly reduces the human time. It is applicable to layered T7§r0108- 1E“'°pea” Microwave ConMunich, Germany, Oct. 1999, pp.
neural networks as well as arbitrary structures (e.g., KBNN)[21] R. Lehmensiek and P. Meyer, “An efficient adaptive frequency sampling

Accurate neural model development is made possible even in  algorithm for model-based parameter estimation as applied to aggres-
the presence of accidental large errors in training data. The algo-  Sive SPace mappingiicrowave Opt. Technol. Leftol. 24, pp. 71-78,
rithm can automatically produce a neural model with user-speg22] u. Beyer and F. Smieja, “Data exploration with reflective adaptive

ified accuracy, without requiring the user’s understanding of _ models,"Comp. Stat. Data Anglvol. 22, pp. 193-211, 1996.

. . . ] J.W. Bandler, W. Kellermann, and K. Madsen, “A nonlingamptimiza-
the neural-network issues. The technique provides a systema{m tion algorithm for design, modeling and diagnosis of networkSEE

framework for automated neural modeling approach, which can  Trans. Circuits Systvol. CAS-34, pp. 174-181, Feb. 1987.
; ; i ; [24] P. HuberRobust Statistics New York, NY: Wiley, 1981.
be incorporated into the overall microwave CAD enV|ronment.[25] 0. 3. Zhang, “NeuroModeler,” Dept. Eleciron.. Carlton Univ., Ottawa,
ON, Canada, 2000.
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